
Black Hole Thermalization and Microstructure
From Microstate Statistics
arXiv: 2110.03188 (Main Content)
arXiv: 1906.02653

Krishan Saraswat and Niayesh Afshordi



BH Unitarity and the need for Microstructure

• AdS/CFT formulates quantum gravity in AdS in terms of unitary
CFT.

• BHs are thermal systems in CFT⇒ BH evolution is unitary.
• Unitarity is not manifest from classical bulk description.
• Motivates introduction of “microstructure” which restores
unitarity.
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Ringdown of Classical vs Unitary BH

• There is a difference between classical and unitary BH
thermalization.

• How and when do the deviations manifest?
• How is this related to details of the unitary description?
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Echoes from Classical Models for BH Microstructure

• Cutoff has some semi-reflective boundary conditions.

• Echoes occur since perturbations repeatedly bouncing back and fourth
between cutoff and outer boundary.

• techo ∼ tscrambling ≃ β ln(S) when cutoff is placed proper radial Planck
length from horizon (KS & Afshordi 2019).

• Should we generally expect to see deviations in the form of simple
echoes?
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Unitary Thermalization and the Form Factor

• View the black hole as a thermal ensmeble of eSBH microstates.
• We are interested in the normalized form factor:

Z(β + it)Z(β − it)
Z(β)2

=

∑
n,m e−β(Em+En)ei(En−Em)t∑

n,m e−β(Em+En)
(1)

• View form factor as proxy for 2-point function calculation in
thermal ensemble of microstates.

• How is tdev in form factor related to details of the spectrum of
microstates?

• Are there echoes in the form factor?
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BHs as Unitary Quantum Chaotic Systems

• Recent progresses in AdS/CFT suggest BHs are dual to quantum
chaotic systems.

• Hamiltonian, H, describes the dynamics of quantum chaotic
system.

• Has consequences on spacing statistics between microstates.
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Microstate Spacing Statistics and Quantum Chaos

• Generally quantum chaotic systems exhibit eigenvalue
“repulsion.”

• P is probability density of spacing between two nearest
neighbor pair of eigenvalues.
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Statistical Model for Spectrum of BH Microstates

• Assume δEk are random variables that are
independent-identically-distributed (i.i.d. model) .

• Using i.i.d. model of random spectrum we have:
P 7→ 〈Z(β + it)Z(β − it)〉.
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Wigner Surmise Spacing Statistics

• Assume nearest neighbor spacings approximated by Wigner
surmise:

Pq(s) ∼ sqe−s
2

(2)

• Pq(s = 0) = 0⇒ Chaotic repulsion.
• q = 1, 2, and 4 for classical Gaussian ensembles.
• We consider more general values of q > 0 which occur in
β-ensembles.

• How does varying q affect thermalization behaviour?
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Wigner Surmise Form Factor

• As you increase q (i.e. repulsion) you start to see oscillations
(echoes) before the plateau.

• Manifest on time scales t ∼ 〈δE〉−1 ∼ tHeisenberg � tscrambling.
• Not quite the same as echoes in classical models.
• Is it possible to get more “classical” echoes? Yes, but you must
violate i.i.d assumption. 9



“Classical” Echoes from Separated Clusters of States

H = ω0

 N/2⊕
p=0

(
p− N

4

)
IΩ(p)×Ω(p) +

ϵ

ω0
HGUE

 , (3)
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Coupled Oscillators as Toy Model of Unitary BH
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Summary

• tdev related to vicinity of microstructure to “horizon.”
• For microstructure localized within proper Planck length of
horizon, expect tdev ≳ β ln(S) ∼ tscrambling .

• Deviations in the form of echoes occur for systems with:
• Enhanced eigenvalue repulsion (β-ensembles).
• Regularly spaced cluster of states (coupled oscillator example).

Possibility of detecting imprints of microstructure in gravitational
wave observations depends on the statistical properties of the
black hole’s spectrum of microstates. 12


